翻訳と辞書
Words near each other
・ Diagnostic peritoneal lavage
・ Diagnostic program
・ Diagnostic robot
・ Diagnostic substitution
・ Diagnostic test
・ Diagnostic wax-up
・ Diagnosticos da America
・ Diagnostics of Karma
・ Diago
・ Diagonal
・ Diagonal argument
・ Diagonal band of Broca
・ Diagonal butterflyfish
・ Diagonal form
・ Diagonal formula
Diagonal functor
・ Diagonal intersection
・ Diagonal lemma
・ Diagonal magic cube
・ Diagonal Mar i el Front Marítim del Poblenou
・ Diagonal matrix
・ Diagonal method
・ Diagonal mirror
・ Diagonal Norte (Buenos Aires Underground)
・ Diagonal pliers
・ Diagonal relationship
・ Diagonal spread
・ Diagonal subgroup
・ Diagonal View
・ Diagonal Zero Zero


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Diagonal functor : ウィキペディア英語版
Diagonal functor

In category theory, for any object a in any category \mathcal where the product a\times a exists, there exists the diagonal morphism
:\delta_a : a \rightarrow a \times a
satisfying
:\pi_k \circ \delta_a = id_a for k \in \,
where \pi_k is the canonical projection morphism to the k-th component. The existence of this morphism is a consequence of the universal property which characterizes the product (up to isomorphism). The restriction to binary products here is for ease of notation; diagonal morphisms exist similarly for arbitrary products. The image of a diagonal morphism in the category of sets, as a subset of the Cartesian product, is a relation on the domain, namely equality.
For concrete categories, the diagonal morphism can be simply described by its action on elements x of the object a. Namely, \delta_a(x) = \langle x,x \rangle, the ordered pair formed from x. The reason for the name is that the image of such a diagonal morphism is diagonal (whenever it makes sense), for example the image of the diagonal morphism \mathbb \rightarrow \mathbb^2 on the real line is given by the line which is a graph of the equation y=x. The diagonal morphism into the infinite product X^\infty may provide an injection into the space of sequences valued in X; each element maps to the constant sequence at that element. However, most notions of sequence spaces have convergence restrictions which the image of the diagonal map will fail to satisfy.
In particular, the category of small categories has products, and so one finds the diagonal functor \mathcal \rightarrow \mathcal \times \mathcal given by \Delta(a) = \langle a,a \rangle, which maps objects as well as morphisms. This functor can be employed to give a succinct alternate description of the product of objects ''within'' the category \mathcal: a product a \times b is a universal arrow from \Delta to \langle a,b \rangle. The arrow comprises the projection maps.
More generally, in any functor category \mathcal^\mathcal (here \mathcal should be thought of as a small index category), for each object a in \mathcal, there is a constant functor with fixed object a: \Delta(a) \in \mathcal^\mathcal. The diagonal functor \Delta : \mathcal \rightarrow \mathcal^\mathcal assigns to each object of \mathcal the functor \Delta(a), and to each morphism f: a \rightarrow b in \mathcal the obvious natural transformation \eta in \mathcal^\mathcal (given by \eta_j = f). In the case that \mathcal is a discrete category with two objects, the diagonal functor \mathcal \rightarrow \mathcal \times \mathcal is recovered.
Diagonal functors provide a way to define limits and colimits of functors. The limit of any functor \mathcal : \mathcal \rightarrow \mathcal is a universal arrow from \Delta to \mathcal and a colimit is a universal arrow F \rightarrow \Delta. If every functor from \mathcal to \mathcal has a limit (which will be the case if \mathcal is complete), then the operation of taking limits is itself a functor from \mathcal^\mathcal to \mathcal. The limit functor is the right-adjoint of the diagonal functor. Similarly, the colimit functor (which exists if the category is cocomplete) is the left-adjoint of the diagonal functor. For example, the diagonal functor \mathcal \rightarrow \mathcal \times \mathcal described above is the left-adjoint of the binary product functor and the right-adjoint of the binary coproduct functor.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Diagonal functor」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.